Comparing the Locomotion Dynamics of the Cockroach and a Shape Deposition Manufactured Biomimetic Hexapod

نویسندگان

  • Sean A. Bailey
  • Jorge G. Cham
  • Mark R. Cutkosky
  • Robert J. Full
چکیده

We describe the locomotion dynamics of a biomimetic robot and compare them with those of its exemplar: the cockroach. The robot is a small (0.275kg) hexapod created using a layered manufacturing technique that allows us to tailor the compliance and damping of the limbs to achieve passive stabilization similar to that observed in insects. The robot runs at over 3 body-lengths per second (55 cm/s) and easily traverses hip-height obstacles. However, high-speed video and force data reveal differences between the robot’s locomotion dynamics and the inverted spring-pendulum model that characterizes most running animals, including cockroaches. Closer examination of the individual leg forces shows that these differences stem from the behavior of the middle and rear legs and points to suggestions for future designs and further experimentation. Force Plate Sagittal Plane Trajectory of Center of Mass Ground Reaction Force Vectors (minus gravity) Running Direction

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and optimization of live fish locomotion in a biomimetic robot fish

This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...

متن کامل

Architectures for a biomimetic hexapod robot

This paper describes a six-legged robot based on the features of an agile insect, the American cockroach, Periplaneta americana. The robot is designed with insect-like leg structure and placement, and actuators that mimic muscles. A test leg is also described that shows how sensory feedback can serve as the basis of the control system for the robot in order for it to achieve the degree of adapt...

متن کامل

Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA

This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...

متن کامل

Surface Activation of NiTi Alloy by Using Electrochemical Process for Biomimetic Deposition of Hydroxyapatite Coating (TECHNICAL NOTE)

Electrochemical depositions of calcium phosphate (Ca-P) film on NiTi alloy in concentrated simulated body flood (SBF×5) were carried out by cathodic polarization. The Ca-P layer was successfully deposited on Ni-Ti alloy substrate under 10mA/cm2 current density for 2 hours at room temperature. Then, in order to investigate the bioactivity of the pre-calcified samples, they were immersed in SBF f...

متن کامل

Iac-05-a3.2.b.09 an Innovative Mechanical and Control Architecture for a Biomimetic Hexapod for Planetary Exploration

This paper addresses the design of a six legged robot for planetary exploration. The robot is specifically designed for uneven terrains and is biologically inspired on different levels: mechanically as well as in control. A novel structure is developed basing on a (careful) emulation of the cockroach, whose extraordinary agility and speed are principally due to its self-stabilizing posture and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000